Geochronologic constraints across the Main Central Thrust shear zone, Bhagirathi River (NW India): Implications for Himalayan tectonics

نویسنده

  • Elizabeth J. Catlos
چکیده

The Main Central Thrust shear zone is the dominant crustal thickening feature in the Himalayas, largely responsible for the extreme relief and mass wasting of the range. Along the Bhagirathi River in NW India, the Main Central Thrust is several kilometers thick and separates high-grade gneisses of the Greater Himalayan Crystallines from Lesser Himalayan metasedimentary rocks. Th-Pb ion microprobe ages of monazite dated in rock thin section from the Greater Himalayan Crystallines are Eocene (38.0 ± 0.8 Ma) to Miocene (19.5 ± 0.3 Ma), consistent with the burial of the unit during imbrication of the northern Indian margin and subsequent exhumation due to Main Central Thrust activity, respectively. However, two samples directly beneath the Main Central Thrust yield 4.5 ± 1.1 Ma (T = 540 ± 25 °C and P = 700 ± 180 MPa from coexisting assemblage) and 4.3 ± 0.1 Ma (fi ve grains) matrix monazite ages, suggesting Pliocene reactivation of the structure. Hydrothermal monazites at the base of the Main Central Thrust shear zone record Th-Pb ages of 1.0 ± 0.5 Ma and 0.8 ± 0.2 Ma, the youngest ever reported for the Himalayas. These ages postdate or overlap activity along structures closer to the Indian foreland and show that the zone of Indo-Asia plate convergence did not shift systematically southwestward from the Main Central Thrust toward the foreland during the mountain-building process. Instead, age data support out-of-sequence thrusting and reactivation consistent with critical-taper wedge models of the Himalayas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinematic model for the Main Central thrust in Nepal

We present a kinematic model for the Himalayan thrust belt that satisfies structural and metamorphic data and explains recently reported late Miocene–Pliocene geochronologic and thermochronologic ages from rocks in the Main Central thrust zone in central Nepal. At its current exposure level, the Main Central thrust juxtaposes a hanging-wall flat in Greater Himalayan rocks with a footwall flat i...

متن کامل

U-Pb zircon geochronology of major lithologic units in the eastern Himalaya: Implications for the origin and assembly of Himalayan rocks

Models for the origin and deformation of Himalayan rocks are dependent upon geometric and age relationships between major units. We present fi eld mapping and U-Pb dating of igneous and detrital zircons that establish the lithostratigraphic architecture of the eastern Himalaya, revealing that: (1) the South Tibet detachment along the BhutanChina border is a top-to-the-north ductile shear zone; ...

متن کامل

A Late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism

Perhaps the best known occurrence of an inverted metamorphic sequence is that found immediately beneath the Himalayan Main Central Thrust (MCT), generally thought to have been active during the Early Miocene. However, in situ 208Pb/ 232Th dating of monazite inclusions in garnet indicates that peak metamorphic recrystallization of the MCT footwall occurred in this portion of the central Himalaya...

متن کامل

Has focused denudation sustained active thrusting at the Himalayan topographic front?

The geomorphic character of major river drainages in the Himalayan foothills of central Nepal suggests the existence of a discrete, west-northwest–trending break in rock uplift rates that does not correspond to previously mapped faults. The 40Ar/39Ar thermochronologic data from detrital muscovites with provenance from both sides of the discontinuity indicate that this geomorphic break also corr...

متن کامل

Fluvial incision and tectonic uplift across the Himalayas of central Nepal

The pattern of fluvial incision across the Himalayas of central Nepal is estimated from the distribution of Holocene and Pleistocene terraces and from the geometry of modem channels along major rivers draining across the range. The terraces provide good constraints on incision rates across the Himalayan frontal folds (Sub-Himalaya or Siwaliks Hills) where rivers are forced to cut down into risi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007